skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ogami, Itsuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the chemical abundance distributions of the Fornax, Sculptor, Ursa Minor, and Draco dwarf galaxies using Subaru/Hyper Suprime-Cam (HSC) photometric data. The HSC data set, which includes broadbandgandifilters and the narrowband NB515 filter, offers sensitivity to iron and magnesium abundances, as well as surface gravity, enabling the identification of giant stars and foreground dwarfs. For analysis, we selected a total of 6713 giant candidates using a random forest regressor trained on medium-resolution (R∼ 6000) Keck/Deep Imaging Multi-Object Spectrograph spectroscopic data. Our analysis reveals the extent of radial metallicity gradients in the galaxies. Such trends, not detectable in earlier studies, are now captured owing to the substantially enlarged sample size and areal coverage provided by the HSC data. These results are also consistent with chemical abundance patterns previously observed in the central regions through spectroscopic studies. Furthermore, we infer that Fornax underwent extended star formation, whereas Sculptor formed both metal-poor and metal-rich stars over a shorter time. Ursa Minor and Draco appear to have experienced brief, intense star formation episodes leading to nearly extinguished star formation. This study underscores the critical role of the expanded HSC data set in revealing chemical gradients that were previously inaccessible. Future work incorporating additional spectra of metal-poor stars and age-sensitive isochrone modeling will enable more accurate maps of chemical abundance distributions. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Abstract We analyze the outer regions of M33, beyond 15 kpc in projected distance from its center, using Subaru/Hyper Suprime-Cam multicolor imaging. We identify red giant branch (RGB) stars and red clump (RC) stars using the surface-gravity-sensitiveNB515filter for the RGB sample and a multicolor selection for both samples. We construct the radial surface density profiles of these RGB and RC stars and find that M33 has an extended stellar population with a shallow power-law index ofα> −3, depending on the intensity of the contamination. This result represents a flatter profile than the stellar halo that was detected by the previous study focusing on the central region, suggesting that M33 may have a double-structured halo component, i.e., inner/outer halos or a very extended disk. Also, the slope of this extended component is shallower than those typically found for halos in large galaxies, implying intermediate-mass galaxies may have different formation mechanisms (e.g., tidal interaction) from large spirals. We also analyze the radial color profiles of RC/RGB stars and detect a radial gradient, consistent with the presence of an old and/or metal-poor population in the outer region of M33, thereby supporting our proposal that the stellar halo extends beyond 15 kpc. Finally, we estimate that the surface brightness of this extended component isμV= 35.72 ± 0.08 mag arcsec−2. If our detected component is the stellar halo, this estimated value is consistent with the detection limit of previous observations. 
    more » « less
  3. Abstract We present the discovery of NGC253-SNFC-dw1, a new satellite galaxy in the remote stellar halo of the Sculptor Group spiral, NGC 253. The system was revealed using deep, resolved star photometry obtained as part of the Subaru Near-Field Cosmology Survey that uses the Hyper Suprime-Cam on the Subaru Telescope. Although rather luminous (MV= −11.7 ± 0.2) and massive (M*∼ 1.25 × 107M), the system is one of the most diffuse satellites yet known, with a half-light radius ofRh= 3.37 ± 0.36 kpc and an average surface brightness of ∼30.1 mag arcmin−2within theRh. The color–magnitude diagram shows a dominant, old (∼10 Gyr), and metal-poor ([M/H] = −1.5 ± 0.1 dex) stellar population, as well as several candidate thermally pulsing asymptotic giant branch stars. The distribution of red giant branch stars is asymmetrical and displays two elongated tidal extensions pointing toward NGC 253, suggestive of a highly disrupted system being observed at apocenter. NGC253-SNFC-dw1 has a size comparable to that of the puzzling Local Group dwarfs Andromeda XIX and Antlia 2 but is 2 magnitudes brighter. While unambiguous evidence of tidal disruption in these systems has not yet been demonstrated, the morphology of NGC253-SNFC-dw1 clearly shows that this is a natural path to produce such diffuse and extended galaxies. The surprising discovery of this system in a previously well-searched region of the sky emphasizes the importance of surface-brightness limiting depth in satellite searches. 
    more » « less